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Abstract

We present ab initio ideal strength calculations in body-centered cubic (bcc) tungsten for ‘pencil-glide’ slip on {110}, {112}, and
{123} planes and for the {100} cleavage strength. We use these results to analyze the tensile and shear strengths of other bcc
metals. In all bcc metals, the minimum shear strength on any plane containing �111� is �0.11/S�111�, where S�111� is the elastic
compliance for any shear in a �111� direction. The ideal cleavage strength on {100} for many bcc metals is �0.083/s11 where s11

is the single crystal elastic compliance. Comparison of the ideal shear and tensile strengths offers a measure of the inherent
ductility or brittleness of a material. © 2001 Elsevier Science B.V. All rights reserved.
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1. Introduction

Calculations of ideal strength are of great theoretical
interest because they are an upper bound to the
strength of any real crystal. Although they are compu-
tationally difficult, ab initio calculations are of particu-
lar interest because they offer quantitatively believable
estimates of these upper bounds. With recent advances
in computer technology, ab initio calculations of the
ideal tensile strengths [1–3] and shear strengths [4,5] of
body-centered cubic (bcc) metals are becoming more
common.

We have recently completed a comprehensive ab
initio study of the ideal strengths of tungsten for shear
on each of the three common bcc slip systems and for
a single axis of tension [6]. The shear systems examined
were for the �111� directions on {110}, {112} and
{123} planes. These systems are collectively described
by the term ‘pencil-glide’. We only examined one direc-
tion of tension, �100�, because prior theoretical and
experimental work [3,7,8] all identify �100� axes as the
weak directions in tension and {100} planes as the
cleavage planes. This is a result of the geometry of the

Bain transformation, which produces the face-centered
cubic (fcc) crystal structure after a small tensile defor-
mation along �100�.

Both the shear and tensile calculations allowed full
structural relaxations orthogonal to the applied strains.
These relaxations proved critical for identifying the
simple crystallographic reason that the ideal shear
strengths on all pencil-glide planes were nearly identi-
cal. In the present paper, we also discuss the implica-
tions of these calculations in tungsten for
understanding the behavior of other bcc metals.

2. Ideal strength of bcc tungsten

The computational procedure is described fully in [6].
For each strained configuration of interest, the quasi-
static (T=0) energy of the tungsten crystal and the
Hellmann–Feynman stresses were calculated using the
local density approximation (LDA) within a pseudopo-
tential total-energy scheme incorporating semi-relativis-
tic corrections [9,10]. The energy and stress were
calculated as a function of strain under the functional
equivalent of stress control. In this case, which provides
the most meaningful measure of the ideal strength [11],
the selected strain is fixed, and the other five indepen-
dent strains are adjusted until their conjugate Hell-
mann–Feynman stresses are less than 0.15 GPa.
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Fig. 1 shows the stress–strain behavior for tension
along �100� and for shear on the three common
slip systems of bcc. Also shown are sinusoidal fits to the
stress–strain behavior. The agreement between the si-
nusoidal fits and the ab initio results is quite good.
Even more striking is the close similarity of the
stress–strain relations for �111� slip in the easy direc-
tions on the three planes. (The shear strengths on {112}
and {123} planes are a function of the sign of the
shear strain applied. We use the minimum-strength
— or ‘easy’ — direction to define the ideal
strength.)

The calculated shear strengths (18 GPa) are
lower than the shear strengths inferred from nano-in-
dentation experiments (26–28 GPa) [12]. However,
the agreement is much better if a simple correction to
the errors of linear-elastic Hertzian contact
models is used to account for the deviations from
linear-elastic response near elastic instability. With this
correction, the experimental numbers drop to 16.5–18
GPa [6].

3. Source of the ideal strength

Two clear trends are apparent in the existing calcula-
tions of ideal strength [13]. First, the ideal strength in a
particular deformation mode is proportional to the
modulus that governs linear elastic deformation in that
mode. Second, the constant of proportionality is fixed
by the position of the nearest energetic extremum along
the deformation path.

For �100� tension in bcc, the relevant relaxed mod-
ulus is given by

E�100�
r =

1
s11

=
(c11−c12)(c11+2c12)

c11+c12

, (1)

where sij and cij are the single crystal elastic compliances
and moduli. In all of the bcc transition metals, the
nearest extrema along the tensile deformation path is a
maximum corresponding to a fcc structure [1,14]. This
is the Bain strain, �b=0.26, assuming a constant vol-
ume path for comparative purposes. In the bcc alkali
metals, a nearer extrema is theoretically possible if the
fcc phase is metastable instead of unstable.

There are two reasons for the nearly identical
strengths on all the shear systems examined. First, the
shear modulus for all three systems is identical. This
identity is true for all bcc metals, and not just for
tungsten, which happens to be elastically isotropic.
Second, the position of the energetic extrema is also
nearly identical for all three slip systems.

The modulus for shear will, in general, depend on
both the shear direction and the shear plane, but,
because of the 3-fold symmetry for rotation about
�111� in bcc, any shear in a �111� direction has a
relaxed modulus of

G�111�
r =

1
S�111�

=
3c44(c11−c12)

4c44+c11−c12

. (2)

The position of the energetic extrema also is nearly
identical for all types of shear along �111� [6]. This is
because of the relatively open structure of bcc, which
has eight nearest neighbors at a distance of 0.866a0 and
six next-nearest neighbors at a distance of a0, where a0

is the lattice constant. An applied shear breaks the
symmetry of these neighbors (Fig. 2). Again assuming
constant volume deformation for comparative pur-
poses, after a relaxed shear of 0.34, there is a high
symmetry crossover point, which is identical for shear
on {112} or {123} planes (Fig. 2b). Shear on planes
with normals near �112� or �123� will also pass
through this energetic maximum. A slightly different
extrema geometry applies for shears on planes with
normals close to �110� [6]. Both high symmetry ex-
trema geometries are only reached if full atomic relax-
ation is allowed.

If we follow Frenkel [15] and Orowan [16] in assum-
ing a sinusoidal form for the stress–strain curves, the

Fig. 1. Stress as a function of strain for tension along �100� and for
�111� shear in the ‘easy’ direction on {110} (�’s), {112} (�’s), and
{123} planes (�’s).
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Fig. 2. Illustration of the symmetries of pencil-glide in bcc. (a)
Illustrates the stacking sequence of the eight nearest and six next-
nearest neighbors along the �111� direction in bcc. (b) Shows the
symmetry of the {112} and {123} energetic extrema. In (b), the four
a and eight b atoms each are at equal distances from the central
atom.

The predictions of Eqs. (5) and (6) are quite close to
the tungsten ab initio results of 0.072 E�100�

r and 0.11
G�111�

r .

4. Discussion

Eq. (5) will give the ideal tensile strength of any bcc
metal whose fcc structure is unstable. This is true in all
the ab initio calculations of both Craievich et al. (Cr, V,
Mo, Nb, W, Ta) [1] and those of Roundy and Cohen
(Fe) [14]. It is not clear whether the bcc alkali metals
will also have an unstable fcc phase. If they do not, and
the sinusoidal fit to the stress–strain curve is still
reasonable, Eq. (5) will overestimate the ideal tensile
strengths.

Since any shear in a �111� direction in bcc has a
relaxed modulus of G�111�

r and because the period of
the stress–strain curve for any �111� shear is �0.34,
the ideal shear strength of any pencil-glide system in
any bcc metal will have an ideal strength given by Eq.
(6). This is in marked contrast to the result of Frenkel
that gives �max=Gb/2�h, where h is the interplanar
spacing and b, the Burger’s vector, is the length of the
shortest lattice vector in the direction of slip [15,17].

Table 1 lists the elastic moduli and ideal strengths of
all bcc metals as calculated from Eqs. (1), (2), (5) and
(6). It also tabulates the ratio �=��111�

max /��100�
max . � is a

measure of the inherent ductility or brittleness of a
material, and it can be defined in a given material by
the ratio of the minimum shear strength in any slip
system to the minimum tensile strength in any direction
[17].

Although in most cases, bcc metals shear by disloca-
tion motion, the ideal strength may be approached near
grain boundaries and crack tips where dislocation mo-
tion is extremely difficult as the result of geometric
pinning and dislocation pileups. In the limit of very
small �, a material will be inherently ductile. Any
tensile load will produce yield by shear on a plane
oriented roughly 45° to the tensile axis before a tensile
instability (such as cleavage failure) is reached. This
seems to be the case for fcc metals such as Cu, where �

is relatively small [18,19]. In the limit of large �, a
material will be inherently brittle. If such a material is
loaded in simple shear, it will fail in a tensile mode on
a plane oriented roughly 45° to the shear plane. We do
note that even the most brittle materials, including
diamond, can deform ductilely under the compressive
constraint of an indenter.

For bcc materials, � can be expressed as a function
of the bulk modulus K= (c11+2c12)/3, the single-crys-
tal Poisson’s ratio � �= (3K−2c44)/(6K+2c44), the an-
isotropy ratio �= (c11−c12−2c44)/K, and the critical
strains ��100�* =�b=0.26 and ��111�* =0.34:

stresses in tension (�) and in shear (�) will be a function
of the tensile (�) and shear (�) strains:

�=��100�
max sin

� ��

0.26
n

(3)

and

�=��111�
max sin

� ��

0.34
n

, (4)

where ��100�
max and ��111�

max are the ideal strengths for
tension and shear, respectively [13]. In the limit of small
strain, �=E�100�

r � and �=G�111�
r �, and the ideal

strengths are given by

��100�
max �

0.26E�100�
r

�
=0.083E�100�

r (5)

and

��111�
max �

0.34G�111�
r

�
=0.11G�111�

r . (6)
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Table 1
Elastic moduli cij (from [20]), average Poisson’s ratio �, anisotropy factor �, relaxed tensile modulus E�100�

r , estimated tensile strength ��100�
max ,

relaxed shear modulus G�111�
r , estimated shear strength ��111�

max , and the ratio �=��111�
max /��100�

max for all bcc metalsa

c11 c44 c12 � � E�100�
r ��100�

max G�111�
r ��111�

max �

9.60 11.3 0.35 −1.43Li 3.0613.4 0.253 1.49 0.162 0.64
9.50 8.00 0.26 −1.51 6.3912.6 0.528Ba 3.08 0.333 0.63

7.59Na 4.30 6.33 0.36 −1.09 1.83 0.152 0.880 0.0952 0.63
K 3.70 1.89 3.17 0.38 −0.97 0.782 0.0647 0.375 0.0405 0.63

1.60 2.44 0.36 −1.03 0.7552.96 0.0625Rb 0.361 0.0390 0.62
230Fe 117 135 0.29 −0.83 130 10.8 59.2 6.41 0.60
264Ta 82.6 158 0.34 −0.31 146 12.1 60.2 6.51 0.54

160 203 0.28 0.00 409523 33.9W 160 17.3 0.51
Cr 348 100 67.0 0.21 0.50 326 27.0 124 13.4 0.50

109 163 0.30 0.32 380465 31.5Mo 134 14.5 0.46
230V 43.1 120 0.36 0.15 148 12.2 50.4 5.45 0.45

28.4 132Nb 0.40245 0.33 153 12.6 42.5 4.60 0.36

a All moduli and strengths are in GPa; all other values are dimensionless.

�=
(1−2� �)(9+�+�� �)

2(1+� �)(9+�+ (�−18)� �)
�111*
�100*

(7)

This reduces to

�=
�111*

2(1+�)�100*
(8)

when the material is isotropic, and so � is inversely
proportional to the average Poisson’s ratio �. Table 1
shows that bcc metals have intermediate values of �,
and suggest that they are conditionally ductile or brittle
depending on the loading geometry. This is consistent
with the ductile–brittle transition seen in most of the
bcc transition metals. Finally, based on ideal strength
arguments, this table suggests that Nb is the most
ductile of all bcc metals.
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145.
[19] D. Roundy, C.R. Krenn, M.L. Cohen, J.W. Morris Jr, Phys.

Rev. Lett. 82 (1999) 2713.
[20] D.F. Nelson (Ed.), Landolt-Börnstein LBIII/29a — Low Fre-

quency Properties of Dielectric Crystals: Second and Higher
Order Elastic Constants, Springer, Berlin, 1992.


	Ideal strengths of bcc metals
	Introduction
	Ideal strength of bcc tungsten
	Source of the ideal strength
	Discussion
	Acknowledgements
	References


